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Sampling of alternatives is often required in discrete choice models to reduce the computational burden and to
avoid describing a large number of attributes. This approach has been used in many areas, including modeling

of route choice, vehicle ownership, trip destination, residential location, and activity scheduling. The need for
sampling of alternatives is accentuated for random regret minimization (RRM) models because, unlike random
utility models, the regret function for each alternative depends on all of the alternatives in the choice-set. In this
paper we develop and test a method to achieve consistency, asymptotic normality, and relative efficiency of the
estimators while sampling alternatives in a class of models that includes RRM. The proposed method can be seen
as an extension of the approach used to address sampling of alternatives in multivariate extreme value models. We
illustrate the methodology using Monte Carlo experimentation and a case study with real data. Experiments show
that the proposed method is practical, performs better than a truncated model, and results in finite-sample
estimates that provide a good approximation of those obtained with a model considering all of the alternatives.
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1. Introduction
Various types of discrete choice models that are relevant
in transport modeling involve huge choice-sets. This is
the case, for example, for models of route choice, trip
destination, residential location, or activity scheduling.
Two types of difficulties may arise when the choice-set
is too large. The first is the computational burden of
managing a large number of alternatives and the second
is the need to gather the data to describe them. Both
difficulties may arise in estimation and forecasting. In
this article we consider the former, proposing a solution
method for random regret minimization (RRM) models.

In the context of the classical random utility maxi-
mization-based (RUM) logit model (McFadden 1974),
a convenient method has been proposed (McFadden
1978) to obtain a consistent estimator for model param-
eters with a sample of alternatives. This estimator
capitalizes on the fact that, because of its indepen-
dently and identically distributed (i.i.d.) errors, the
RUM-based logit model exhibits the independence
of irrelevant alternatives (IIA) property. McFadden’s
(1978) result concerning the sampling of alternatives

for logit has been profusely used over the years. Exam-
ples abound in many areas such as route choice (see,
e.g., Fosgerau, Frejinger, and Karlstrom 2013, Frejinger,
Bierlaire, and Ben-Akiva 2009); vehicle ownership
(Berkovec and Rust 1985); trip destination (Carrasco
2008); residential location (Lee and Waddell 2010); and
activity based modeling (see, e.g., Daly, Hess, and
Dekker 2014, Bradley, Bowman, and Griesenbeck 2010,
Bowman and Ben-Akiva 2001).

Although very convenient from a modeler’s per-
spective, this IIA property is often considered to be
restrictive in terms of the implied behavior of decision
makers. Since the 1970s, this observation has led to
the development of a number of alternative discrete
choice model forms whose errors are not i.i.d. Although
still featuring closed form choice probabilities, these
models do not exhibit the IIA property because they
allow for correlation among the errors associated with
different (subsets of) alternatives. A prominent example
of this category is the nested logit model (Ben-Akiva
1973), which was shown a few years after its incep-
tion to belong, together with the logit, to the more
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general family of closed form choice models based
on a multivariate extreme value (MEV) distribution
(McFadden 1978). More recently, MEV mixture models
have been proposed that allow for even more flexi-
bility in terms of the specification of the error term
distribution and related behavioral implications and
substitution patterns (e.g., McFadden and Train 2000).

The problem of sampling of alternatives in nonlogit
models has been only recently studied. Guevara and
Ben-Akiva (2013b) and Guevara (2010) proposed a
method to achieve consistent estimation while sam-
pling alternatives in MEV models, providing examples
for the nested logit and the cross nested logit. The
method consists in developing a proper correction of a
term that gets truncated because of the sampling. Also,
Guevara and Ben-Akiva (2013a) proposed a method for
estimation while sampling alternatives in logit mixture
models, showing that a naïve approach, in which the
kernel of the mixture is replaced by McFadden’s (1978)
correction for logit, does achieve consistent estimation.
With this, Guevara and Ben-Akiva (2013a) provide theo-
retical support for previous empirical results suggesting
the suitability of the naïve approach for logit mixture
models (McConnel and Tseng 2000, Nerella and Bhat
2004, Azaiez 2010, Lemp and Kockelman 2012).

Recently, a choice model has been proposed that
does not exhibit the IIA-property even though (when
written in logit form) its errors are i.i.d. This RRM
model (Chorus 2010), which is the focus of this paper,
is based on a regret minimization-based decision rule.
The model postulates that when decision makers choose
among alternatives, they try to avoid the situation
where a nonchosen alternative is better than a chosen
one in terms of one or more attributes. This trans-
lates into a regret function for a considered alternative
that by definition features all attributes of all compet-
ing alternatives. Different from a model in which the
attributes of all other alternatives are just included
linearly in the utility (Ben-Akiva 1974), the cross elas-
ticities of the RRM do not need to be the same for all
alternatives. However, in some extreme cases, these
cross elasticities may be ill behaved (Hensher, Greene,
and Chorus 2013), a limitation of the RRM model that
still needs to be addressed.

Since its introduction in 2010, the RRM model has
been estimated and applied by various authors in
the context of a variety of different choice contexts,
involving—to name a few examples—travelers’ choices
among vehicle types, destinations, modes, routes, depar-
ture times, and driving maneuvers; politicians’ choices
among policy options; patients’ choices among medical
treatments; and tourists’ choices among leisure activity
locations. An overview of recent studies empirically
comparing RRM with RUM models can be found in
Chorus, van Cranenburgh, and Dekker (2014).

(  )

(s
)

 

Figure 1 Estimation Time of RRM and MNL Models as a Function of the
Number of Alternatives 4J5

One disadvantage of the RRM model, which was
highlighted in Chorus (2012), is that runtimes may
suffer from combinatorial explosion when choice-sets
become very large. This issue is a direct result from the
behavioral postulate, incorporated in the regret function,
that every alternative is compared with every other
alternative in the choice-set in terms of every attribute.

The combinatorial explosion of RRM, compared to
multinomial logit (MNL), is illustrated in Figure 1,
which depicts estimation time (ordinates axis) as a
function of the number of alternatives (J ) in the choice-
set (abscissas axis). The results were obtained from 10
Monte Carlo simulations for each value of J between
50 and 1,000, in steps of 50. The estimation time
of each simulation is depicted in gray with a small
symbol (a dot for RRM and a triangle for MNL) and
the average within the 10 repetitions for each J is
depicted with a larger dark symbol. Both the RRM
and the MNL models consider only one attribute and
1,000 observations. Figure 1 shows that the average
estimation time for RRM as a function of J is fitted
almost perfectly by a quadratic function, reflecting the
computational problems that arise with RRM models
with large choice-sets. In turn estimation time for MNL
is almost flat with J .

As a consequence, finding a proper way to estimate
RRM models on sampled choice-sets is an important
condition for the model to be useful in the context
of choice situations involving very large numbers of
alternatives. At this point it should be noted that since
the RRM model does not exhibit the IIA-property,
McFadden’s (1978) result does not apply. As mentioned,
this is the case even when—such as is the case for
RRM-based logit models—errors are distributed i.i.d.
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This paper extends the work of Guevara and Ben-
Akiva (2013b) by presenting an estimator for the
RRM-based logit model in the context of sampled
choice-sets (§2). Furthermore, it analyzes the condi-
tions required for consistency, asymptotic normality,
and efficiency and determines the correct expansion
factors required in some relevant examples (§3). Then
it illustrates the methods and studies the finite sam-
ple properties of the estimators using Monte Carlo
experimentation (§4) and real data (§5). The article
finishes by summarizing the main results, their possi-
ble implications, and suggestions for future lines of
research (§6).

2. Estimation and Sampling of
Alternatives in Random Regret
Minimization Models

We consider the RRM model proposed by Chorus
(2010). The behavioral assumption behind the RRM
model is that individual n chooses alternative i, within
the choice-set Cn, if i minimizes the anticipated regret
he or she may get from that decision. The regret is
defined as a measure of how much worse is the chosen
alternative i, regarding each attribute m, compared to
all other alternatives j 6= i.

For example, if m refers to a price attribute, then
�m<0. Therefore, if an agent n chooses alternative i,
he or she will perceive a price regret �m8xjmn − ximn9
if xjmn < ximn, and zero otherwise, for each alterna-
tive j other than i. Formally, if m is the only attribute,
the regret function Rijmn can be summarized by the
expression shown in Equation (1)

Rijmn = max601�m8xjmn − ximn970 (1)

The regret function described in Equation (1) is diffi-
cult to implement in practice for estimation because
it is not differentiable. For that, Chorus (2010) pro-
poses to approximate Rijmn by the expression shown in
Equation (2)

Rijmn = max601�m8xjmn − ximn97

≈ ln41 + exp4�m8xjmn − ximn9551 (2)

which can be seen either as a plausible approxima-
tion (see Figure 1 in Chorus 2010) or as the result
of assuming unobserved heterogeneity in the regret
function.

The regret function Rin of alternative i for agent n is
completed by summing Rijmn over all of the attributes
m and alternatives j 6= i in the choice-set Cn, as shown
in Equation (3)

Rin =
∑

j∈Cn
j 6=i

M
∑

m=1

ln
[

1 + exp4�m8xjmn − ximn95
]

0 (3)

Finally, it is considered that the individual seeks to
minimize a random regret function RRin =Rin − �in,
where �in is a random term assumed to be i.i.d. extreme
value (01�). Under those conditions, the probability
that agent n will choose alternative i will correspond
to the model shown in Equation (4)

Pn4i5=
e−�Rin

∑

j∈Cn
e−�Rjn

1 (4)

where the scale parameter � is identifiable, but has
been usually normalized equal to one. We will consider
such normalization for the rest of the article.

Consider now that the researcher samples a subset
Dn with J̃n elements from the true choice-set Cn that is
considered by the decision maker. As stated before, the
sampling may be needed to reduce the computational
burden and/or facilitate data collection. For estimation
purposes, Dn must include the chosen alternative i,
and then Dn is not independent of i. If i is not included
in Dn, a probability measure constructed combining i
and the elements in Dn may not be well defined since
it may be larger than one. Also, if i is not included
in Dn, the likelihood may be unbounded, precluding
model estimation.

Define �4i1Dn5 the joint probability that agent n
would choose alternative i and that the researcher
would draw the set Dn. Using Bayes theorem, this joint
probability can be rewritten as shown in Equation (5)

�4i1Dn5=�4Dn � i5Pn4i5=�4i �Dn5�4Dn51 (5)

where �4i �Dn5 is the conditional probability of choos-
ing alternative i, given that the set Dn was drawn,
and �4Dn � i5 is the conditional probability that the
researcher drew the set Dn, given that alternative i was
chosen by the agent.

Because the events of choosing each of the alterna-
tives in Cn are mutually exclusive and totally exhaus-
tive, we can write the probability �4Dn5 of constructing
the set Dn as shown in Equation (6)

�4Dn5=
∑

j∈Cn

�4Dn � j5Pn4j5=
∑

j∈Dn

�4Dn � j5Pn4j51 (6)

where the second equality holds because �4Dn � j5=0
∀ j yDn.

Substituting Equation (6) and the choice probability
Pn4i5 shown in Equation (4) into Equation (5), Equa-
tion (7) is obtained by canceling and rearranging terms

�4i �Dn5=
e−Rin+ln�4Dn � i5

∑

j∈Dn
e−Rjn+ln�4Dn � j5

0 (7)

The direct application of McFadden’s (1978) result on
sampling of alternatives for logit can be used to show
that maximizing a conditional log-likelihood based
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on the expression shown in Equation (7) would yield
consistent estimators of the model parameters.

Equation (7) shows two things about the conditional
probability �4i �Dn5. First, the form of the probability
is very similar to Equation (4), except for the term
ln�4Dn � j5, which is known as the sampling correction.
Second, the summation in the denominator is only
over the alternatives in Dn.

However, Equation (7) does not yet offer a practical
solution for the sampling of alternatives in random
regret models. The problem is that even though the
denominator of the choice probability depends only
on Dn, the argument Rin still depends on the full
choice-set Cn.

In this paper, we adapt Equation (7) to the problem of
sampling of alternatives in RRM models by replacing Ri

with an estimator that depends only on the subset Dn.
We analyze the conditions required for consistency,
asymptotic normality, and efficiency; determine the
correct expansion factors required in some relevant
examples; and illustrate the finite sample properties of
the estimators using Monte Carlo experimentation and
real data.

The results on consistency, asymptotic normality, and
efficiency are summarized by the following theorem,
which is a generalization of the result of Guevara and
Ben-Akiva (2013b) to a class of models that includes
the RRM model: models that can be written in a logit
form, with nonlinear utility functions that depend on
the full choice-set.

Theorem 1. Consider N observations, a choice-set Cn of
cardinality Jn, and two subsets Dn ⊆Cn and D̃n ⊆Cn both
with cardinality.1 If

(a) the choice model is of the logit form, in the sense that
it can be written as

Pn4i5=
eWin4Cn5

∑

j ∈Cn
eWjn4Cn5

1

where Win4Cn5 is any continuous and twice differentiable
function of the attributes xjn of all of the alternatives in Cn,
and a set of parameters �∗.2

(b) Ŵin4D̃n5 is an unbiased estimator of Win;
(c) The variance of Ŵi4D̃n5 is bounded and decreases

with J̃n. Because Ŵi4D̃n5 is also unbiased, this means that
Ŵi4D̃n5 is also consistent; and

(d) �4Dn � j5 > 0 ∀ j ∈ Dn and �4Dn � j5 = 0 ∀ j y Dn,
which holds when the chosen alternative is included in Dn.

Then the maximization of the conditional quasilog-
likelihood (CQLL) function

N
∑

n=1

ln �̂4i �Dn1 D̃n5=

N
∑

n=1

ln
eŴin4D̃n5+ln�4Dn � i5

∑

j∈Dn
eŴjn4D̃n5+ln�n4Dn � j5

(8)

1 This final assumption is just used to simplify the notation. It is not
essential and can be generalized.
2 Note that Win4Cn5 includes, but is not limited to, the regret function
defined in Equation (3).

yields, under general regularity conditions, consistent esti-
mators of the model parameters �∗, as J̃n increases with
N at any rate. If J̃n increases faster than

√
N does, the

estimators of the model parameters will be consistent and
asymptotically normal

�̂∼
a Normal4�∗1R−1ìR−1/N5 (9)

where

ì= Var
¡ ln�n4�

∗ �D5

¡�
and R = E

¡2 ln�n4�
∗ �D5

¡�¡�′
1

where

�4i �Dn5=
eWin4Cn5+ln�4Dn�i5

∑

j∈Dn
eWjn4Cn5+ln�n4Dn�j5

0

This variance-covariance matrix can be approximated by the
Berndt-Hall-Hall-Hausman (BHHH) estimator (Berndt,
Hall, and Hall 1974), using �̂4i �Dn1 D̃n5, evaluated at the
optimal values.

Note that the variance-covariance matrix attained with
Equation (8) is the same one attained by maximization of
the impractical conditional log-likelihood function

N
∑

n=1

ln�4i �Dn5=

N
∑

n=1

ln
eWin4Cn5+ln�4Dn � i5

∑

j∈Dn
eWjn4Cn5+ln�n4Dn � j5

0 (10)

This implies that the feasible estimator proposed in Equa-
tion (8) is relatively efficient, in the sense that it yields
estimators that are as asymptotically efficient as the estima-
tors obtained when considering the full choice-set to calculate
Win4Cn5. They are not globally efficient because some effi-
ciency is lost when sampling alternatives in Equation (10).

Finally, if Jn is finite and the protocol is sampling without
replacement, J̃n needs to increase only up to J̃n = Jn to achieve
the asymptotic distribution shown in Equation (9).

Proof. The proof builds on the same approach used
by Train (2009, pp. 247–257) to derive the statistical
properties simulation-based estimators. In the appendix
we provide a summarized demonstration, highlighting
principal parts and including a justification for the
main assumptions that are required.

The main difference between this theorem and the
results of Guevara and Ben-Akiva (2013b) is in the term
that gets truncated and the way this can be resolved in
practice for RRM.

Two cases can be distinguished in the theorem: when
the cardinality of the choice-set is finite and when it is
infinite.

For finite Jn, if the protocol is sampling with replace-
ment, J̃n will have to grow infinitely with N to achieve
consistency and grow faster than

√
N to achieve asymp-

totic normality. Instead, if the protocol is sampling
without replacement, when J̃n grows with N it will
eventually reach Jn. At that point, the variance of
Ŵin4D̃n5 will be zero because Win = Ŵin and the CQLL
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in Equation (8) would become the same as the con-
ditional log-likelihood in Equation (10), achieving
consistency and asymptotic normality.

When Jn is infinite, J̃n could grow to infinity with N ,
even if the protocol is sampling without replacement.
However, a relevant question in this case is whether
or not an RRM model with an infinite number of
alternatives will be well defined. Models with infinite
choice-sets have been previously considered, among
others, for spatial choice, labor demand, and route
choice. Examples of those are the works of McFadden
(1976), Ben-Akiva and Watanatada (1981), Dagsvik
(1989) and, more recently, Fosgerau, Frejinger, and
Karlstrom (2013). The validity of the RRM with an
infinite number of alternatives can be stated for a
fairly general case. Following the derivation of the
continuous logit (McFadden 1976), RRM will be well
defined for cases in which the alternatives are built
as partitions of a space of elemental alternatives X,
a space that can be finite or infinite. An example of a
choice model of this type is the problem of residential
location choice. Nevertheless, numerical limitations
in the estimation and forecasting of a model with an
infinite choice-set would make the model intractable,
which is what motivates the need for sampling of
alternatives.

Although the theoretical results hold asymptotically,
the Monte Carlo experiments in §4 show that for
finite N (1,000 in the example) and finite Jn (1,000), J̃n as
small as 30 can result in proper estimators. Moreover,
depending on the behavior of Var4Ŵin5 for small J̃n, the
theorem sheds some light on the speed of convergence,
which can be useful in practice. For example, if one
would like to maintain the statistical properties attained
when J̃n = 30 and N = 11000, but with N = 21000, the
theoretical result states that J̃n would have to be at
least 45 because

J̃n = 45 ≈ 30
√

21000
√

11000
0

3. Application of the Method
in Practice

3.1. Introduction
For the application of the theorem to the RRM model
in practice, it is convenient to note first what occurs if,
in Equation (3), the incumbent alternative is included
in the regret function

R̃in =
∑

j∈Cn

M
∑

m=1

ln
[

1 + exp4�m8xjmn − ximn95
]

= Rin +M ln4250 (11)

Equation (11) suggests that the inclusion of the
incumbent alternative implies the addition of the same
constant M ln425 to all of the alternatives, where M

is the number of attributes. Since this same constant
cancels out, considering the incumbent alternative
in the regret function has no impact in the choice
probability shown in Equation (4). For the rest of the
paper, we will consider the definition of the regret
function including the incumbent alternative, as in
Equation (11). This will facilitate the notation of the
different versions of the practical application of the
method. Also, going forward, we will remove the tilde
from R̃in to save notation.

We propose the following R̂in as a feasible approxi-
mation of Rin:

R̂in =
∑

j∈D̃n

wjn

M
∑

m=1

ln
[

1 + exp4�m8xjmn − ximn95
]

0 (12)

The expansion factors wjn in R̂in needed for attaining
unbiasedness, as required by the theorem, would have
to have the following form:

wjn =
ñjn

E4ñjn5
1 (13)

where ñjn corresponds to the number of times alterna-
tive j is included in the sample for agent n and E4ñjn5 is
its expected value (see Guevara and Ben-Akiva 2013b,
Appendix B, for a proof of a similar case but in a differ-
ent context of nests in RUM MEV models). Note that
if the protocol used to draw alternatives is sampling
without replacement, ñjn = 1 and E4ñjn5 corresponds to
the probability of sampling alternative j .

The expansion factors wjn would depend on the
sampling protocol used and, importantly, on whether or
not the subset Dn used to write the sampling correction
ln�4Dn � j5 in Equation (7) is the same as the subset (D̃n)
used to build the expansion factors wjn.

We will next explore three methods to construct in
practice the expansion factors shown in Equation (13).
These methods are analogous to some of the approaches
explored by Guevara and Ben-Akiva (2013a, b) for the
problem of sampling of alternatives in logit mixture
and MEV, respectively.

3.2. Expansion Factors When Resampling
Is Possible

Consider first the case when the researcher has full
control of the data and is able to sample a set Dn from
Cn to build the sampling correction ln�4Dn � i5 and
to sample a different set D̃n from Cn to construct the
expansion factors wjn needed to build R̂in. To save
notation we will consider that both Dn and D̃n have
the same cardinality J̃ for all individuals, but this is
not essential and can be generalized.

The expansion factors required depend on the proto-
col used for building D̃n. We consider as an example
that the protocol is a simple random sample without
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replacement. Note that the chosen alternative does
not need to necessarily be in D̃n. The sampling in this
case is random from all of the elements in Cn. This is
crucial for the simplicity and practicality of applying
this version of the method.

In such a case the expansion factors in R̂in that are
needed to achieve an unbiased estimator of Rin are the
following for each alternative j :

wjn =
ñjn

E4ñjn5
=

1

J̃ /J
=

J

J̃
0 (14)

To describe the likelihood function required to esti-
mate the model, we need to specify the sampling
protocol used to build the set Dn in order to be able to
determine McFadden’s (1978) sampling correction. For
example, consider that the protocol used in this case is
the following. In the first step, the chosen alternative
for each observation is included. Then nonchosen alter-
natives are randomly sampled without replacement to
make a total of J̃ . In this case the sampling correction
will correspond to

ln�n4D � i5= ln
(

J − 1
J̃ − 1

)

1

a term that, for this particular sampling protocol, is
constant across alternatives and, therefore, cancels out
in the calculation of the quasilog-likelihood function
shown in Equation (8).

To summarize, given the particular sampling proto-
cols for Dn and D̃n described, the conditional probability
of choosing alternative i, given that the sets Dn and D̃n

were drawn, can be approximated by

�̂n4i �Dn1 D̃n5
Resampling

=
e−

∑

j ∈ D̃n
4J /J̃ 5

∑M
m=1 ln61+exp4�m8xjmn−ximn957

∑

k∈Dn
e−

∑

j ∈ D̃n
4J /J̃ 5

∑M
m=1 ln61+exp4�m8xjmn−xkmn957

0 (15)

Therefore, according to the theorem, a model esti-
mated using the CQLL function built using Equa-
tion (15) will result in consistent and asymptotically
normal estimators of the model parameters and the
variance-covariance matrix of the estimators can be
obtained using the BHHH estimator. This estimation
tool is practical because it can be applied in canned
estimation software such as BIOGEME (Bierlaire 2003)
or ALOGIT (Daly 1992) with minor modifications,
making it very attractive for practitioners.

Finally, note that the intuition behind Equation (15)
is direct. If, for example, 10 out of 1,000 alternatives
are sampled randomly to build D̃n, the regret function
has to be calculated with the 10 alternatives and then
amplified by 100 to correct for regret being other-
wise underestimated because of the smaller (sampled)
choice-set. Note that since for this particular sampling

protocol the expansion factor is the same for all of
the alternatives, the wjn

= J /J̃ term comes out of the
sum and becomes indistinguishable with the overall
utility scale.

Things become more troublesome when the researcher
is forced to instead use the same set Dn to build the
term R̂in. We will discuss this in §3.3.

3.3. Expansion Factors When Resampling Is Not
Possible

Consider that the researcher does not have full control
of the data and is not able to sample two sets Dn and D̃n.
This can occur, for example, when the researcher is
using a database previously processed and for which
he or she does not have access to the original source
because of privacy concerns.

If the protocol used to build Dn (and therefore
also D̃n) was to draw first the chosen alternative and
then to sample J̃ − 1 alternatives randomly, the expan-
sion factors required to attain unbiasedness are the fol-
lowing (see Guevara and Ben-Akiva 2013b, Appendix C,
for a demonstration of an equivalent case):

wij =
1

Pn4j5+ 44J̃ − 15/4J − 15541 − Pn4j55
0 (16)

There is a crucial difference between Equation (16)
and Equation (14). The expression shown in Equa-
tion (16) depends on the choice probabilities, which
are unknown beforehand in an application with real
data. To avoid this limitation in practice, we postulate
two methods called Pop.Shares and 1_0.
Method Pop.Shares. One way to approximate the

choice probabilities needed for the calculation of the
expansion factors is to use the population shares Hj

of each alternative. Replacing choice probabilities by
population shares in Equation (16), the expansion
factors implied by this procedure become the following:

wjn =
1

Hj + 44J̃ − 15/4J − 15541 −Hj5

∀n= 11 0 0 0 1N3 ∀ j ∈Cn0

An advantage in this case is that the expansion
factors wjn can be directly calculated without incurring
additional computational costs. Although the true
population shares are not available in a real application,
good approximations of them may be available from
different sources (e.g., census or flow counts) or directly
from the sample, provided it is random. In case the
Hj has to be gathered from the sample, it could be
calculated as

Hj ≈

∑

n yjn

N
1

where yjn equals one if individual n chooses alterna-
tive j and zero otherwise.
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Given the particular sampling protocol described
for Dn, the conditional probability of choosing alter-
native i, given that the set Dn was drawn, can be
approximated by

�̂n4i �Dn5
Pop.Shares

=
e−Q4i5

∑

k∈mDn
e−Q4k5

1 (17)

with

Q4s5 2=
∑

j ∈Dn

[

∑

n yjn

N
+

J̃ − 1
J − 1

(

1 −

∑

n yjn

N

)]−1

·

M
∑

m=1

ln61 + exp4�m8xjmn − xsmn9570

The Pop.Shares method could be easily implemented
in canned estimation software with minor modifications,
making it attractive for practitioners. The disadvantage
is that the approximation Hj ≈ Pn4j5 may be too rough,
potentially causing large finite sample biases. This
approach is studied using Monte Carlo experiments
in §4.

Method 1_0. Another approach to avoid the need for
the choice probabilities is to approximate them by con-
sidering that they take value 1 for the observed chosen
alternative and 0 for the nonchosen ones. Replacing
these assumptions in the example described in Equa-
tion (16) the expansion factors in this case would be
the following:
wjn = 1 if j is the chosen alternative and
wjn = 4Jn − 15/4J̃n − 15 if j is not chosen.

It should be noted that the 1_0 approach to address
the problem of estimation while sampling alternatives
is the same as the one that was implicitly considered
by Frejinger, Bierlaire, and Ben-Akiva (2009) and by
Lee and Waddell (2010) in a different context.

Given the particular sampling protocol described
for Dn, the conditional probability of choosing alter-
native i, given that the set Dn was drawn, can be
approximated by

�̂n4i �Dn5
1_0

=
e−Q14i5

∑

k∈Dn
e−Q14k5

1 (18)

where

Q14s5 2=
∑

j ∈Dn

[

yjn + 41 − yjn5
Jn − 1

J̃n − 1

]

·

M
∑

m=1

ln61 + exp4�m8xjmn − xsmn9570

The advantages and disadvantages of this proce-
dure are similar to those of the Pop.Shares method: it
can be directly implemented without using additional
information and without incurring additional computa-
tional costs. Additionally, this method can be easily

implemented in canned estimation software with minor
modifications, making it attractive for practitioners.
The disadvantage is that this approximation may be too
rough and may cause large finite sample biases. This
approach is studied using Monte Carlo experiments
in §4.

4. Monte Carlo Experiments
4.1. Introduction
In this section, we report three Monte Carlo experiments
that illustrate the application of the different versions
of the method outlined in the previous sections. These
experiments also shed light on the relative performance
of the variations of the method in finite samples; we
also caution that, as with any Monte Carlo experiment,
the results in this respect are only valid in the context
of the experiments considered.

4.2. Assessment of Different Versions of the
Method

In the first experiment we analyze the empirical finite
sample properties of each version of the method in
recovering the true parameters of the model, depending
on the number of alternatives sampled J̃ . The structure
of this experiment is summarized in Figure 2. The true
or underlying model is an RRM model with 1,000 alter-
natives and 1,000 observations, with a single attribute
x distributed Uniform(−111) and with parameter �= 1.
The motivation for considering a single attribute in this
experiment was to be able to estimate the true model
considering a number of alternatives as large as 1,000
to be used as a benchmark.

The methodology used to implement the RRM model
shown in Figure 2 for the Monte Carlo experimentation
consists of several steps. First, the choice probability
was calculated using the true value of the parameter
(�= 1) in Equation (3). Then these choice probabilities
were used to build a discrete cumulative distribution
function by alternative. Afterward, a random number
Uniform(011) was generated for each observation.
Finally, the chosen alternative was determined as
the inverse of the cumulative distribution function,
evaluated for each random number.

……

∑

∈

Figure 2 Structure of the Random Regret Model for the Monte Carlo
Experiment

Note. N = 110003 J = 110003 J̃ = 51151301 and 50.
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The sampling protocol used to draw alternatives Dn

from the choice-set Cn in this experiment was the
following. First, the chosen alternative for each obser-
vation was included. Then nonchosen alternatives
were randomly sampled, without replacement, to make
a total of J̃ = 5, 15, 30, and 50. The sampling protocol
used to draw alternatives D̃n, when it was considered
to be different from Dn, was a simple random sample
of J̃ alternatives from Cn0

Under this setting we estimated the model using
five different methods. The first method corresponds
to the True model, a model where all alternatives
are considered in the choice-set. This model acts as a
benchmark, both in terms of the maximum quality that
can be attained for the estimators and of the maximum
estimation time.

The second estimation method corresponds to a
Truncated version of the problem where only the
elements in the subset Dn are used to build the term
R̂Truncated

in =
∑

j∈Dn
ln41 + exp4�4xjn − xin555. This method

acts as a benchmark in terms of the minimum quality
that can be attained for the estimators.

The third estimation method considered is Resam-
pling, a method in which an alternative set D̃n is
sampled to build the term R̂in. In this application, D̃n

was drawn as a random sample without replacement
so that the expansion factors are calculated as wjn = J /J̃ .
The CQLL considered in this case is the one shown in
Equation (15).

The fourth estimation method considered is
Pop.Shares. In this case D̃n =Dn, the expansion factors
are calculated using the sample shares as an approxi-
mation of the choice probabilities, and the CQLL is the
one shown in Equation (17).

The final estimation method considered is 1_0. In
this case D̃n =Dn, the expansion factors are calculated
using the observed choice as an approximation of the
choice probabilities, and the CQLL considered in this
case is the one shown in Equation (18).

The model was generated 100 times for different
values for J̃ . For each repetition of the model, we
regenerated the attribute x, the choices, and the sets Dn

and D̃n. Estimation was performed using the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) (Fletcher 1980) algo-
rithm coded in the optim package of the open-source
software R (R Development Core Team 2008) on an
IBM eServer with a CPU Intel Xeon X5560 of 2.8 GHz
and 12 GB RAM.

For each model estimated we report the following
statistics to assess the empirical finite sample properties
of each method in estimating the model coefficient �.
Bias. Difference between average estimator within

the 100 repetitions and the true value of the parameter.
The Bias should tend to zero if the mean of the sampling
distribution is equal to the true value.

Root Mean Squared Error 4RMSE5. Square root of the
sum of the sampling variance and the square of the
bias. The smaller the RMSE, the better the method is in
terms of small sample efficiency.
t-test. Ratio between the bias and the sampling

standard deviation of the average of the estimators.
This statistic can be used to test the null hypothesis
that the mean of the sampling distribution is equal to
its respective true value.

Count. Number of times, among the 100 repetitions,
the estimator of each repetition is within a 75% con-
fidence interval of the true value constructed using
the sampling variance from all of the repetitions. This
statistic is usually termed the empirical coverage. The
larger this statistic is, the better the performance of
the method. The closer to 75 this statistic is, the closer
its empirical distribution is to its theoretical sampling
distribution.

Together with these statistics, we report in Table 1 the
respective J̃ , the estimation time in minutes (Time), and
the number of times—within the 100 repetitions—that
the model was not estimable because of an error in the
optimization procedure (Error).

The estimation results are also summarized in Fig-
ure 3. The abscissa corresponds to the J̃ and the ordinate
depicts the estimator �̂ of the single model parameter.
The value of J̃ = 11000 is not presented in scale, and
the values of �̂ are limited to those between 0.0 and
2.0. The true value of �= 100 is highlighted with a hor-
izontal line. The estimators obtained for each method
and repetition are drawn in gray with the respective
symbols detailed in the legend of Figure 3 for each
method. The average of the estimators, within the 100
repetitions, is marked with a larger symbol for each
method.

The estimators of the True model, the one estimated
using J̃ = 11000, are depicted with a dot in Figure 3.
As expected, this model performs well. The average of
the 100 repetitions is almost equal to the true value of
�= 100, and each repetition is close and symmetrically
around it. This is reaffirmed by the statistics deployed
in Table 1. The Bias is about 0.5%. The RMSE is about
8%, and t-tests are far below the critical value of 1.984 to
erroneously reject the null hypothesis that �= 100. Also,
none of the 100 repetitions failed, and the empirical
coverage was 76, which is almost equal to its nominal
value of 75. Finally, the estimation time was about one
hour per repetition on average.

The estimators of the Truncated method, the one
estimated ignoring the impact of the truncation of the
regret function caused by the sampling, are depicted
with an x in Figure 3. As expected, although the Bias
decreases with J̃ (see Table 1), the results are still
very poor for J̃ = 50. Not even one estimator falls in
the 0.0–2.0 range depicted in Figure 3. Table 1 shows
that the Bias is above 25,000% compared to the true
value and so is the RMSE. Also, for all values of J̃ ,
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Table 1 Statistical Analysis of �̂ for Different Methods to Estimate RRM Model with Sampling of Alternatives,
Varying J̃

Method Bias RMSE t-test Count J̃ Time (min) Error

True 00005105 0008092 0006322 76 11000 64061 0
Truncated 347.0 390.4 10939 12 5 00002615 0

284.4 288.6 50794 0 15 0001639 0
270.8 273.1 70703 0 30 0005473 0
259.0 260.2 10015 0 50 001447 0

Resampling 003848 006276 007763 0 5 00002875 68
−0001060 004702 0002255 88 15 0001984 0
0006234 005419 001158 94 30 0007124 0
0002292 003844 0005972 97 50 001841 0

Pop.Shares 0006136 008994 0006838 0 5 00003164 4
−0006717 003184 002158 75 15 0002044 0
−0001191 003216 0003705 90 30 0007146 0
−0001601 001993 0008058 85 50 001813 0

1_0 363.9 414.1 10841 0 5 00004880 19
292.5 296.7 50923 0 15 0002359 0
287.8 290.0 80155 0 30 0009929 0
287.9 289.0 11030 0 50 003138 0

Note. J = 11000; N = 11000; �= 1; 100 repetitions; one attribute, distributed U4−111).

the t-test is above 1.984, the threshold for erroneously
rejecting with 95% confidence the null hypothesis that
the mean of the sampling distribution is equal to its
respective true value. It is interesting that the best value
of the t-test occurs for J̃ = 5, which can be explained
by noting that the sample variance is larger for such
small J̃ . Finally, none of the 100 repetitions of the
estimation procedure failed and the estimation time
was on average less than 10 seconds for J̃ = 50. As a
conclusion and completely in line with expectations,
the Truncated method performs very poorly in all

�

�

Figure 3 Estimators for Different Methods
Note. 100 repetitions for various (J̃ ).

aspects for small J̃ , although it can be noted that results
improve as J̃ grows, slightly but steadily.

The estimators of the Resampling method, which is
obtained by maximizing the CQLL shown in Equa-
tion (15), are depicted with a circumference in Figure 3.
This estimation method performs acceptably with J̃ as
small as 30. From that point, the Bias is below 6% and
the t-test is far below the critical value for rejecting the
null hypothesis that � is equal to its true value. The
RMSE is not as small as with the True model but is 600
times below the Truncated one. Also, it is interesting
that 68 out of 100 repetitions failed for J̃ = 5, but none
failed for larger J̃ . This may be explained because the
fundamental part of the method is to gather a proper
estimate of the regret function with a reduced number
of alternatives, and maybe with J̃ = 5 the estimator of
Rin is so poor that it results in the estimation procedure
becoming unbounded or undefined. Another possible
explanation is that there might be a limitation of the
estimation procedure BFGS in this context.

The estimation time of the Resampling method took
about 11 seconds on average for J̃ = 50, which is very
similar to the Truncated method, and about 350 times
smaller than that of the True model. Finally, the Count
for the Resampling method is higher than the nominal
value of 75. This may reflect that 100 repetitions may not
be enough in this case for providing a proper account
of the sampling distribution or that the finite sample
distribution is not well behaved. As a conclusion, these
results suggest that although the Resampling method
works asymptotically, various finite sample properties,
particularly the Bias, are below 6% with J̃ as small
as 30 out of 1,000. However, statistical testing with
finite samples should be treated with care since results

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

18
.1

89
.2

3.
16

2]
 o

n 
24

 A
pr

il 
20

15
, a

t 1
1:

24
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Guevara, Chorus, and Ben-Akiva: Sampling of Alternatives in RRM Models
10 Transportation Science, Articles in Advance, pp. 1–16, © 2014 INFORMS

suggest that the t-tests may have low power. Further
investigation in this final issue is needed.

The estimators of the Pop.Shares method, the one
obtained by maximizing the CQLL shown in Equa-
tion (17), are depicted with a cross in Figure 3. This
method performs as well as the Resampling method.
For some values of J̃ , Pop.Shares is superior and for
others Resampling is superior. Failed estimations also
occur only for J̃ = 5, but now in only four out of 100
repetitions, which suggests that this method is more
robust with regard to this aspect. Estimation times
are also of the same order of magnitude as for the
Resampling method. As with the Resampling method,
the Count in this case is larger than its nominal value.
As a conclusion, the results suggest that the Pop.Shares
method works as well as the Resampling method for
finite samples.

Finally, the estimators of the 1_0 method, the one
obtained by maximizing the CQLL based in the expres-
sion shown in Equation (18), are depicted with an
inverted triangle in Figure 3. The results obtained with
this method are very poor, in fact almost as poor as
the results obtained with the Truncated method. As a
conclusion, although the 1_0 method works asymptoti-
cally, the finite sample properties in this application are
very poor, with Bias as large as those of the Truncated
model. The Resampling and the Pop.Shares methods
both showed substantially better results.

4.3. Sensitivity to the Variance of x
The second experiment is devised to analyze the rela-
tive performance of the methods when changing the
variance of the data. The experiment is equivalent to the
one described in the previous section in various aspects.
There is also only one attribute x, the true parameter is
�= 1, and there are 1,000 observations. In turn, the
true choice-set in this case has 500 alternatives for

Table 2 Statistical Analysis of �̂ for Different Methods to Estimate RRM

Method xlim Bias RMSE t-test Count Time (min) Error

True 002 00001229 00034632 00035514 75 17039 0
100 −00010732 00071602 00151598 77 17021 0
300 00130163 00504423 00267089 79 18054 0

Truncated 002 143.9 144.4 11075 0 0009732 0
100 125.6 126.1 11094 0 001113 0
300 52.73 52.94 11027 0 001108 0

Resampling 002 −0002873 0005970 005490 62 000686 0
100 −0005144 003231 001613 97 0007934 0
300 −004710 005009 20765 4 001007 0

Pop.Shares 002 0000008789 0005354 00001641 76 000677 0
100 −0008756 001569 006725 60 0008052 0
300 −004961 005148 30605 3 0009911 0

1_0 002 226.5 226.9 18015 0 001136 0
100 142.3 142.7 13034 0 001374 0
300 58.23 58.42 12038 0 001355 0

Note. J = 500; N = 11000; J̃ = 30; X follows U4−xlim1 xlim5.

�

�

Figure 4 Estimators for Different Methods
Note. 100 repetitions, J = 5003 N = 110003 J̃ = 30; X follows U4−xlim1 xlim5.

all individuals, and 30 alternatives are sampled. The
attribute x is distributed Uniform(−xlim1+xlim), where
xlim varies from 0.2 to 3.0, in steps of 0.2. The data
was generated 100 times and the estimators of the
five methods are reported in Figure 4 and Table 2. In
Table 2, only the results for xlim = 0.2, 1.0, and 3.0 are
reported.

The working hypotheses are fourfold. (1) A larger
variance x will reflect a larger variance of the statistic
that is being estimated (Rin) by the proposed method,
which implies that a larger size J̃ of the sampled
choice-set would be needed to attain the same level of
error at a given confidence level. (2) A larger variance
of x would also imply a larger variance of the choice
probability, implying that a larger N would be needed
to maintain the statistical properties. This would impact
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both the true model and the estimation with sampling
of alternatives. (3) If the variance is too large, this may
eventually cause numerical problems in the estimation
methods. (4) Finally, an increase in the variance of
the attribute will increase the level of information,
improving the efficiency of the estimator.

Figure 4 and Table 2 show that just as for the experi-
ments reported in §4.2, the methods Truncated and 1_0
have a poor performance. No realizations in the 0.0–2.0
range are observed for both methods. Furthermore,
the Resampling and Pop.Shares methods show very
similar performance as reported in the previous subsec-
tion. For xlim =1.0 and smaller, both methods perform
very well, with biases below 9%, small RMSE, and
t-tests below the critical value to erroneously reject
the null hypothesis that the coefficient is equal to its
true value. Things become worse for larger xlim, both
for Resampling and for the Pop.Shares method. This
can be explained by a mixture of Hypotheses 1 and 2.
The fact that the Bias grows for xlim > 106, even for
the true model, suggests that from that point onward,
the second hypothesis is more relevant, which means
that a larger N is required to maintain good statistical
properties.

It is interesting that the Bias is positive for xlim > 106
for the True model and negative for Resampling and
Pop.Shares. This suggests that the first and second
hypotheses may be acting in different directions for
Resampling and Pop.Shares methods. Further investi-
gation is needed to properly explain this behavior.

There is no support for Hypothesis 3 for the range of
values of xlim analyzed because none of the estimations
failed. There is also no support for Hypothesis 4 for the
range of xlim considered. For all cases the RMSE grows
with xlim, which suggests that the effect in terms of
efficiency is offset by the other effects. For smaller xlim
(not reported) the adjustment slightly deteriorated in a
similar way for both the Resampling and Pop.Shares
method.

In conclusion, results suggest that the variance of
the data impacts the J̃ that is needed to attain a certain
statistical quality of the estimators. This implies that it
is not possible to suggest a proper J̃ for all contexts—
for example, as a given fraction of J . In §4.4 we propose
a method to choose the number of alternatives to be
sampled in practice.

4.4. Selection of J̃ in Practice
The third Monte Carlo experiment was devised to
illustrate how one may decide which J̃ to use in a
practical application. This procedure is not exclusive to
the problem of sampling of alternatives in RRM but
also applies to MEV, logit mixture, and logit.

In general, as was highlighted in §4.3, it is not possi-
ble to provide a recommendation for J̃ as a fraction of J .
The J̃ needed will depend, among other things, on the

distribution of the data, the number of attributes, the
true value of the parameters, the number of observa-
tions N , the optimization procedure, and the computing
capabilities. The choice of a proper value for J̃ involves
a trade-off between estimation time and quality of the
estimators. The larger J̃ is, the longer it will take to
estimate the model, but the estimates will be better.

In a practical application, the researcher will have a
single database. To assess the fit of the model for a
given J̃ , the researcher can sample K sets Dk4J̃ 5 and
D̃k4J̃ 5, obtaining a respective series of �̂k. With this, the
following two statistics can be calculated:

¯̂�=
1
K

K
∑

k=1

�̂k4J̃ 5 and �̂�̂ =

√

1
K − 1

K
∑

k=1

4�̂k −
¯̂�k5

20

The statistic �̂�̂ can be seen as an estimator of the noise
of the estimation parameter, which is equivalent to the
concept of noise described for the estimation of the
score in the demonstration shown in the appendix, but
also includes the finite sample bias caused by using
the impractical conditional maximum likelihood shown
in Equation (10), instead of the log-likelihood of the
true model.

The larger the J̃ , the smaller the �̂�̂ will be. Eventually,
when J̃ = J , �̂2

�̂
= 0. The noise �̂�̂ is a measure that the

researcher may want to constrain and trade-off with
estimation time, when choosing the J̃ to be used in
practice.

If the researcher is able to estimate the model with the
full choice-set to obtain �̂4C5, ¯̂� can be used to estimate
what can be defined as the sampling bias ¯̂�− �̂4C5. Note
that this bias is not the same as the one we considered
in the context of the previous experiments. In those
experiments, the bias was calculated with respect to
the true value of the parameter. In this case, the bias
is calculated with respect to the estimator obtained
when considering the full choice-set and for a given
data set. This notion of bias is equivalent to the concept
of bias described for the estimation of the score in the
appendix. The larger J̃ , the smaller the sampling bias
will be. Eventually, when J̃ = J , the sampling bias will
be zero. The statistic ¯̂�− �̂4C5 is thus a measure that
the researcher may want to constrain and trade off
with estimation time when choosing the J̃ to be used
in practice.

If the researcher is not able to estimate the model
with the full choice-set to obtain �̂4C5, ¯̂� can still be
used directly to choose the proper J̃ by checking its
stability. This is analog to the way that the number of
draws has to be chosen when estimating a model by
maximum simulated likelihood, as suggested by Chiou
and Walker (2007).

To illustrate this procedure we report a Monte Carlo
experiment in which the true model is an RRM that
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Table 3 Practical Determination of J̃ in an RRM

J̃ Sampling bias ¯̂
� �̂�̂ Time (seconds) Error

5 −0008610 008461 003090 001663 4
15 0009320 10025 006257 10180 0
30 −0003381 008984 001526 30792 0
50 −0002142 009107 001278 10029 0
100 −00001991 009302 000893 45040 0

Note. J = 11000; N = 11000; 30 repetitions; population shares method
�̂4C5= 009322; time 4C5= 57 minutes.

has 1,000 alternatives; there are 1,000 observations and
a single attribute x distributed Uniform(−111) with
parameter �= 1. The estimation of the true model for
a particular realization of x results in �̂4C5= 009322
and is performed in about 57 minutes.

Table 3 summarizes the statistics obtained using the
Pop.Shares method for various J̃ , considering R= 30
repetitions for each J̃ . It should be noted that the repe-
titions in this case are not the same as in the previous
experiments where x, the choices, and the choice-sets
were regenerated each time. In this case, the only thing
that changes across repetitions is Dr4J̃ 5 = D̃r4J̃ 5. For
completeness, we also include in Table 3 the number of
times, within the 30 repetitions, that the optimization
procedure failed.

To choose a proper J̃ , the researcher would have
to make a decision on the desirable sampling bias,
shift in ¯̂�, noise �̂�̂, and estimation time. An additional
criterion would also be to consider not having errors
in the estimation procedure. These criteria could be
accomplished, for example, for J̃ = 30 because it has a
sampling bias below 5%, �̂�̂ of about 15%, estimation
time below five seconds, the shift in ¯̂� about 1%, and
not a single failed estimation within the 30 repetitions.

4.5. Conclusion
The Monte Carlo experiments show that the method
we proposed for sampling of alternatives in the con-
text of RRM models is practical. Results suggest that
Pop.Shares and Resampling versions of the method
seem to provide suitable results for samples of alterna-
tives as small as 30 out of 1,000 alternatives.

Results also illustrate that the sample size that is
needed for obtaining a given level of quality of the
estimates depends on many features, including the
distribution of the data. This means that it is not
possible to provide a simple criterion for the choice
of the proper sample size, such as that J̃ has to be
some fraction of the true J . In turn, the approach
described in §4.4 is recommended to decide based on
the trade-off between estimation time and goodness
of fit. This approach is valid not only for RRM but
also for sampling of alternatives in MEV, logit mixture,
and logit.

The experiments also suggest that although the finite
sample bias can be small for small values of J̃ , the

power of the t-tests with finite samples may be low.
This can be inferred from the observation that empirical
coverage tended to be larger than its nominal value for
most cases. This issue should be analyzed in further
research.

Finally, it should be noted that, as with any Monte
Carlo experiment, the relative assessment of the meth-
ods presented in this section are only valid for the
experiments reported and does not represent a com-
plete description of the finite sampling properties of
the estimators.

5. Application with Real Data
In this section we revisit a real data experiment used
by Chorus (2010) to demonstrate the RRM model. The
data concerns parking choices and was collected by
Van der Waerden, Borgers, and Timmermans (2008) on
the campus of Eindhoven University of Technology.
The choice-set consists of 14 parking lot alternatives
and 350 cases (which is the sample used for estimation
by Chorus 2010).

The choice model considers four attributes of the
parking lots. The first is NR_SPACES, which corre-
sponds to the number of spaces available in each
parking lot. The second is ROOM_MANEUV, which is
a dummy that takes value 1 if the parking lot has extra
space for making maneuvers. The third attribute is
RIGHT_OF_WAY, which is a dummy that takes value 1
if the driver has right-of-way when leaving the parking
lot. The final attribute is DISTANCE, which corresponds
to the distance between the agent’s workplace and the
parking lot and is discretized as follows: equals 1 when
the distance is approximately 100 meters, equals 2
when the distance is approximately 300 meters, and
equals 3 when it is approximately 500 meters.

Although the choice-set may not seem particularly
large (J = 14), as a proof of concept of the method, we
preferred not to generate a pseudo-synthetic experiment
with a larger choice-set (as in Bierlaire, Bolduc, and
McFadden 2008) and instead used the real data as
they were. The reason is that a pseudo-real data set
will not offer fundamentally new insights compared to
the experiments described in §4; additionally, our real
data will illustrate the behavior of the method with
various attributes and provide additional support to
the statement that the choice of the proper J̃ cannot be
specified as a given fraction of J .

Table 4 summarizes the estimators obtained for
the true RRM model of parking lot choices using all
14 alternatives available. These results are the same
as the ones reported by Chorus (2010). We will use
the Resampling method to estimate the model with
sampling of alternatives, varying J̃ from 2 to 14. The
model was estimated 30 times for each J̃ .

We report in Figure 5 the average estimators ¯̂�
within the 30 repetitions. The values of �4C5, which
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Table 4 RRM True Model of Parking Lot Choices

�̂ S.E.

NR_SPACES 0008671 400014305
ROOM_MANEUV 0009066 400027505
RIGHT_OF_WAY 0003387 400027635
DISTANCE −10444 40045175
L(0) −92307
L(�̂5 −40407
�2 0.5619
N 350
J 14

is the respective parameter attained with the true
model reported in Table 4, are depicted with a dashed
line. We also report a bandwidth of 10% deviation
from each �4C5. As expected, all ¯̂� get closer to �4C5
as J̃ grows. However, the speed of convergence is
heterogeneous. On one side ¯̂� for NR_SPACES is within
the 10% bandwidth for J̃ = 2. On the other side, for
DISTANCE, this occurs only as J̃ = 13 out of 14.

In Figure 6 we report the standard deviation �̂�̂

for each J̃ . Note that �̂�̂ = 0 for J̃ = 14. This value is
depicted with a dashed line. As expected, each �̂�̂

shrinks as J̃ grows. However, as with ¯̂�, the behavior is
heterogeneous. The noise �̂�̂ for NR_SPACES is always

NR_SPACES ROOM_MANEUV
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Figure 5 Average ¯̂
� as a Function of J̃ for the RRM of Parking Lot Choice

Note. Thirty repetitions; resampling method.

below 0.04, whereas for DISTANCE, it only occurs for
J̃ = 14.

The heterogeneity in ¯̂� and �̂�̂ illustrates that when
choosing J̃ in a model with various attributes the
researcher would have to consider some type of norm to
account for the degree of convergence of the full vector
of parameters. A robust strategy could be to consider
the convergence of the worst behaved parameter. In
addition, because for one of the parameters a somehow
reasonable convergence is attained only for J̃ = 93%
of J serves to illustrate that the choice of J̃ cannot be
settled as a fixed fraction of J .

6. Conclusion
This article proposes a method to obtain consistent,
asymptotically normal, and efficient estimators (i.e.,
efficient relative to any other estimator using the same
sample) for the problem of sampling of alternatives
in the context of random regret minimization mod-
els. In light of the fact that runtimes of RRM models
increase almost quadratically with choice-set size, find-
ing a proper way to estimate RRM-models on sampled
choice-sets is a crucial condition to ensure that the RRM
approach remains a feasible and attractive alternative
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Figure 6 Average noise �̂�̂ as a Function of J̃ for the RRM of Parking Lot Choice
Note. Thirty repetitions; resampling method.

for random utility maximization models in the con-
text of (very) large choice-sets. Given that the RRM
model, even when written in logit form (i.e., with i.i.d.
errors), does not exhibit the IIA property, McFadden’s
(1978) result cannot be applied to obtain a proper
correction term when choice-sets are sampled. To over-
come this situation, a tailor-made correction approach
for RRM models is presented in this paper, which
is a direct extension of the approach developed by
Guevara and Ben-Akiva (2013b) to address a similar
problem in RUM-based MEV models.

In line with expectations, Monte Carlo experiments
showed that sampling of alternatives causes a signifi-
cant bias in the estimators of the RRM-model parame-
ters when no correction is applied. In addition, these
experiments as well as an application on real data show
that the proposed method for correcting the terms
that get truncated because of the sampling performed
reasonably well. In cases where the researcher has full
control of the data and it is possible to obtain an addi-
tional sample to expand the truncated regret function,
the method proposed is easily applicable. When it is not
possible to resample, the method requires knowledge of
the choice probabilities in order to build the expansion
factors. In this final case, one practical approximation
method showed reasonably good results.

The sample size required to obtain good estimators
while sampling alternatives (in general, not only for
RRM models) will vary on a case-by-case basis and
cannot be expressed as a percentage of the cardinality
of the true choice-set. Using synthetic and real data,
we show that an appropriate strategy to determine if
the size of the sample of alternatives is large enough
is to test the stability of the estimators with different
numbers of alternatives sampled and to analyze the
sampling bias and noise.
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Appendix
The demonstration of the theorem is analog to the two
step procedure used by Train (2009, pp. 247–257) to derive
the asymptotic distribution of simulation-based estimators.
The first step consists in the derivation of the distribution
of the approximated score

ĝ4�5 =
1
N

N
∑

n=1

¡ ln �̂n4� �Dn5

¡�

=
1
N

N
∑

n=1

¡

¡�
ln

eŴin4D̃n5+ln�4Dn � i5

∑

j ∈Dn
eŴjn4D̃n5+ln�n4Dn � j5

1

relative to the true score

g4�5 =
1
N

N
∑

n=1

¡ ln�n4� �Dn5

¡�

=
1
N

N
∑

n=1

¡

¡�
ln

eWin4Cn5+ln�4Dn � i5

∑

j∈Dn
eWjn4Cn5+ln�n4Dn � j5

0

The second step is to derive the distribution of �̂, noting that
�̂ is the root of the equation ĝ4�̂5= 0.

In what follows we provide a summarized account of
the first step, in order to highlight why Ŵin4D̃n5 needs to
be an unbiased estimator of Win and why the variance of
Ŵin needs to be bounded and decrease with J̃ , which also
means that Ŵin4D̃n5 is a consistent estimator of Win. The
reader is referred to Train (2009, pp. 247–257) or Guevara
and Ben-Akiva (2013b) for further details.

To simplify the notation we will assume that D̃n = D̃ for
all n. Consider ĝ4�5 in the vicinity of the true values �∗ in
the following form:

ĝ4�∗5=g4�∗5
︸ ︷︷ ︸

A1

+6E4ĝ4�∗55−g4�∗57
︸ ︷︷ ︸

A2

+6ĝ4�∗5−E4ĝ4�∗557
︸ ︷︷ ︸

A3

0

The first term A1 = g4�∗5 is the statistic that is being
approximated by ĝ4�∗5. The second term A2 corresponds to
the bias of the estimator of g4�∗5, and the third term A3 is
the noise of the approximation.

The noise (A3) corresponds to the deviation of ĝ4�∗5 from
its expected value, which will depend on a particular draw
of the alternatives to construct the choice-set D̃. Because
Ŵi4D̃n5 is bounded and decreases with J̃n, we can claim that
the same occurs with the variance of the noise. This can be
expressed as Var4A3n5= Sn/J̃ , where Sn is the variance of A3

for a given n when J̃ = 1. Then by the generalized version of
the central limit theorem (see, e.g., Train 2009, p. 246), the
noise A3 will have the following limiting distribution:

√
NA3

d
−→ Normal401S/J̃ 51

where S is the population mean of Sn. Consequently, the
asymptotic distribution of the noise A3 will be

A3
a
∼ Normal401S/4J̃N 551

and the noise will vanish as N increases, even if J̃ is fixed.

The bias term A2 can be studied by taking a second order
Taylor’s approximation of Ŵin4D̃n5 around Ŵin4D̃n5 = Win.
Noting that ĝn4�1Win5= gn4�5, it follows that

ĝn4�5 = gn4�5+
¡ĝn

¡B̂n

6Ŵn4�5−Wn4�57

+
1
2
¡2ĝn

¡B̂2
n

6Ŵn4�5−Wn4�57
2
+ on0

Then taking expectations (over possible realizations of the
set D̃n), recalling that Ŵin4D̃n5 is an unbiased estimator of
Win, and considering that the discrepancy on has zero mean,
this Taylor’s approximation can be rewritten as

E4ĝn4�55− gn4�5=
1
2
¡2ĝn4�5

¡Ŵ 2
n

Var4Ŵn4�550

The fact that Var4Wn4�55 is bounded and decreases with J̃
can be captured by the expression Var4Ŵn4�55=Kn/J̃ , where
Kn is scalar. Then the expected value of the bias A2 can be
rewritten as A2 = Z/J̃ , where Z is the sample average of
4Kn/254¡2ĝn/¡B̂

2
n5.

The bias A2 will vanish as N increases, if and only if J̃
increases also with N . Otherwise, ĝ4�5 will be an inconsistent
estimator of g4�5. Instead, an even stronger assumption is
required to achieve asymptotic normality. To understand
why, consider the bias A2 normalized for sample size N

√
NA2 =

√
N

J̃
Z0

This term will vanish as N increases, if and only if J̃
increases faster than does

√
N . Otherwise, the estimator ĝ4�5

will have neither a limiting nor an asymptotic distribution.
In summary, if J̃ increases with N at any rate, ĝ4�5

p
→ g4�5,

and when J̃ increases faster than
√
N , ĝ4�5 will be asymp-

totically normal. Given that ĝ4�5
p

→ g4�5, the limiting and
asymptotic distributions of ĝ4�5 will be the same as those
of g4�5.
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